
 
 

LAWRENCE

N AT I O N A L

LABORATORY

LIVERMORE

 
 UCRL-JC-154845

Fresnel Integral Equations:  
Numerical Properties 
 
 
 

R. J. Adams, N. J. Champagne II, B. A. Davis
 
 

International Conference on Electromagnetics in Advanced

July 22, 2003 

 

Approved for public release; further dissemination unlimited 

Applications, Torino, Italy, September 8-12, 2003



 
 

 

Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor the University of California nor 
any of their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or the University 
of California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or the University of California, and shall not be 
used for advertising or product endorsement purposes. 
 
Auspices Statement 
 

This work was performed under the auspices of the U.S. Department of Energy by University 
of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 

 



Fresnel Integral Equations: Numerical Properties

R. J. Adams∗ N. J. Champagne II† B. A. Davis‡

Abstract — A spatial-domain solution to the prob-
lem of electromagnetic scattering from a dielectric
half-space is outlined. The resulting half-space op-
erators are referred to as Fresnel surface integral op-
erators. When used as preconditioners for nonpla-
nar geometries, the Fresnel operators yield surface
Fresnel integral equations (FIEs) which are stable
with respect to dielectric constant, discretization,
and frequency. Numerical properties of the formu-
lations are discussed.

1 Introduction

A common integral equation formulation of electro-
magnetic scattering from dielectric interfaces is the
PMCHW formulation (after Poggio, Miller, Chang,
Harrington and Wu). Unfortunately, standard nu-
merical discretizations of the PMCHW formula-
tion do not yield well-conditioned matrix equations.
Motivated by similar efforts for scattering from per-
fect electric conductors [1], we seek a preconditioner
for the PMCHW formulation of the dielectric scat-
tering problem which renders the formulation sta-
ble with respect to frequency, discretization, and
dielectric contrast ratio. For reasons that are ex-
plained below, the resulting preconditioning opera-
tor for the coupled PMCHW equations is referred
to as the Fresnel matrix. The Fresnel matrix is de-
termined by inverting the PMCHW formulation for
scattering from a dielectric half-space in the spatial-
domain. Unlike previous solutions to the dielectric
half-space scattering problem, the resulting inverse
operator (i.e., the Fresnel matrix) is expressed in
terms of the traditional surface integral operators
of vector and scalar scattering theory. Because the
Fresnel matrix is defined entirely in terms of famil-
iar, spatial-domain operators, it is trivial to apply
the Fresnel matrix as an analytic preconditioner of
the PMCHW formulation of scattering from non-
planar dielectric surfaces. The resulting equations,
referred to as Fresnel integral equations (FIEs), are
defined below. In contrast to the standard PM-
CHW formulation, the FIE formulation is stable
with respect to the dielectric constant, the dis-
cretization mesh, and the frequency for scattering
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from smooth, nonplanar dielectric interfaces. Pre-
liminary numerical comparisons are provided.

2 Dielectric Formulations

Consider the dielectric half-space scattering prob-
lem. Using the notation defined in [1], the BIEs
in the upper (subscript 1) and lower (subscript 2)
media are
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G1 and G2 are the Green functions in the homo-
geneous media defined by k1 and k2. The local
normal vector n̂ always points from the homoge-
neous region defined by k2 into the homogeneous
region defined by k1. The definitions of T2 and K2

are obtained from (3) after an appropriate change
of subscripts. Continuity of tangential E and H

fields accross the shared boundary provides the con-
ditions

J2 = J1 M 2 = M 1 (4)

With (4) the integral equations (2) are
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Subtracting the equations for J 1 from (1) and
(5) yields the single condition
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and r = η2/η1. The equations
for M1 provide the additional condition

0 = M
i + η1(T1 + rT2)J 1 − (K1 + K2)M1 (7)

where M
i = M

i
1 − M

i
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Equations (7) and (6) combine to form the simul-
taneous system
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An overbar is used to indicate that Q̄ is a two-by-
two matrix of vector operators.

2.1 Half-space problem

The simultaneous system of integral equations (8)
provides a solvable boundary integral equation for-
mulation of scattering from an arbitrary dielectric
interface in three dimensions. For the planar di-
electric half-space problem K ≡ 0. In this case (8)
reduces to
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where
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We also define a related half-space operator, Q̄t,
which will be useful in determining a solution to
(10),
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(12)

3 Direct Solution of Half-space Problem

In this section we determine a direct expression for
the Fresnel matrix, Γ̄, which determines the total
half-space surface currents J 1 and M1 from the
incident quantities J

i and M
i,
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Comparing this with (10) indicates that Γ̄ = Q̄−1

0
.

The determination of a direct form for the inverse
of Q̄0 is complicated relative to the scalar half-space
problem (previously considered elsewhere) by its
vector nature. The component operators of Q̄0 (T1

and T2) couple the rotational and irrotational sub-
spaces of J1 and M1 at the half-space interface [1].

As shown below, this complication is removed after
multiplication of (10) by Q̄t,
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The product on the left side of this equation has
the form

Q̄tQ̄0 =
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]
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where
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and the half-space identity
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was used.

3.1 Vector and scalar integral operators

Inversion of (14) relies on the following identity
which relates the electromagnetic operators T1 and
T2 over a planar interface to the Dirichlet-to-
Neumann (N ) and Neumann-to-Dirichlet (D) op-
erators of scalar scattering theory:

T1T2 + T2T1 = −4
r2 + 1

r
N

2

3 D1D2 (19)

The essential properties of N and D have been dis-
cussed elsewhere and are breifly reviewed below.
The half-space identity (19) provides a connection
between the previously discussed scalar half-space
problem and the vector electromagnetic problem
examined here.

Operators D1 and D2 are defined in the respec-
tive homogeneous media defined by ε1 and ε2. The
operator N3 is defined by the derived dielectric con-
stant

ε3 =
2ε1ε2

ε1 + ε2

(20)

On a planar interface, D1 and N1 are defined as

D1J =

∫
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G1J ds′ (21)

N1J =
∂
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∫

S

∂

∂n′
G1J ds′ (22)

Similar definitions are obtained for D2 and N3 by
replacing the upper medium Green function G1 by



the Green function for the homogeneous media de-
fined by ε2 and ε3, respectively. In all cases Ni and
Di satisfy the relation

DiNi = −1/4 (23)

The subscript i is used to indicate that the opera-
tors Di and Ni are defined in the medium charac-
terized by the dielectric constant εi.

Substituting (19) in (16) yields
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A similar procedure allows U2 to be written
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3.2 Inversion of scalar operators

Using (26) and (27) in (14) leads to
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Multiplying (29) by (N1N2 −N 2
3 ) provides
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A direct expression for the surface currents is ob-
tained by introducing a final operator identity for
the half-space problem,
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The hypersingular operator Ne is defined by the
effective dielectric constant

εe =
ε1ε2

ε1 + ε2

(32)

It follows from (31) and (23) that
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3.3 Fresnel matrix

Using (33) in (30) provides a direct expression for
the half-space surface currents,
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where the Fresnel matrix Γ̄ is expressed in terms of
standard surface integral operators as
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The Fresnel matrix of (36) is the primary analyt-
ical result of this paper. Given the incident fields
generated by an arbitrary source over the surface of
a dielectric half-space, Γ̄ determines the total elec-
tric and magnetic equivalent currents. The solution
is obtained without decomposing the incident fields
into orthogonally polarized components.

Observe that, in addition to operators defined
in the original media indicated by ε1 and ε2, the
Fresnel matrix involves operators defined over two
derived media, indicated by ε3 and εe. The oper-
ator De is essential. It has an infinite eigenvalue
at the critical angle and is thereby able to directly
incorporate surface wave phenomena. In contrast,
the operator N 2

3
is nonessential. It is possible to

express this operator as a weighted difference be-
tween operators N 2

e and N 2

1
, for example. A sim-

ilar decomposition of D2
e does not appear to be a

possibility.

4 Fresnel Integral Equations

The Fresnel matrix has been determined by solv-
ing the planar half-space problem for an arbitrary
excitation. Unlike other solutions of this problem,
Γ̄ is expressed in terms of standard surface integral
operators. For this reason, all operators used to
define Γ̄ in (36) are well defined for an arbitrarily
shaped interface. Consequently, Γ̄ provides a useful
preconditioning operator for arbitrarily shaped in-
terfaces. Starting with the general formulation (8)
we have

Γ̄Q̄

[

J

M

]

= Γ̄

[

J
i

M
i

]

(37)



4.1 Numerical properties: Half-space

It is evident from the preceding discussion that the
condition number of the operator on the left side
of (37), Γ̄Q̄, is unity at all frequencies for a pla-
nar interface characterized by arbitrary dielectric
constants ε1 and ε2. In the following we consider
the corresponding condition numbers of the original
half-space formulation defined in (10). This is ac-
complished by considering a Fourier decomposition
of the currents on the planar boundary, which is as-
sumed to be the Cartesian x-y plane. The param-
eters kx and ky are used to indicate the respective
wavenumbers in the x and y directions. A com-
plete description of the continuous equations (10)
and (37) requires an infinite range of these param-
eters. However, the numerical discretization pro-
cedure effectively truncates the range of kx and ky

which can impact the conditioning of the discrete
operator. Thus, in the following examples we model
the resolution of the discretization mesh by appro-
priately truncating the range of kx and ky used to
compute the condition numbers of Q0.

Figure 1 illustrates the variation in the condition
number of Q0 as a function of the dielectric contrast
ratio, ε2/ε1, where ε1 is real and ε2 = ε2r − jε2i

with ε2r = ε2i. The discretization of the half-space
problem is assumed to be coarse such that the max-
imum resolvable transverse wavenumbers kx and ky

are 10λ−1

1
where λ1 indicates the wavelength in the

upper medium. The figure indicates that (i) the
Fresnel integral equation (37) provides a significant
improvement in the condition number for all con-
trast ratios, and (ii) the relative improvement pro-
vided by (37) increases as the dielectric contrast
decreases.

Figure 2 depicts the dependence of the condi-
tion number of Q0 in (10) on the resolution of the
discretization mesh for a dielectric contrast ratio
ε2/ε1 = 60 − j60. The condition number increases
approximately quadratically as the mesh resolution
in the x- and y-directions increases. This behavior
follows from the simultaneous smoothing and differ-
entiating properties of the operators T1 and T2 [1].
Finally, we observe that the condition number of
(37) is unity for all mesh resolutions, providing a
significant improvement over the standard formu-
lation (10) illustrated in Figure 2.

5 Summary

Fresnel integral equations (FIEs) have been deter-
mined thru the development of a new representa-
tion for the solution to the half-space dielectric scat-
tering problem. The new integral equations have
a condition number which is independent of fre-
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Figure 1: Variation of condition number (κ) with
dielectric constant. (kx = ky = 10λ−1
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Figure 2: Variation of condition number (κ) versus
discretization resolution for a fixed dielectric ratio.

quency, dielectric constants, and mesh resolution.
The extension of the foregoing results to formula-
tions of the scattering problem other than (8) will
be discussed during the presentation of this paper.
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